今天是

实验指导书

  • 金属材料工程专业 ×
    金属学与热处理I
    金属学与热处理II
    金属无损检测、焊接检验
    金属物理性能
    弧焊方法及工艺
    压力焊
    金属焊接性
    焊接冶金学
    热处理工艺学
    热处理原理
    金属材料及热处理
    金属材料学
    金属材料专业综合实验(热处理)
    金属材料专业综合实验(焊接)
    金属力学性能学
    材料近代分析测试方法
    神奇的金属微观世界(开放实验)
    材料电子显微分析
    工程材料
    X射线衍射分析
    焊接结构
    钎焊工艺
    金属材料科学基础Ⅰ
    金属材料科学基础II
    应力腐蚀
    材料研究方法
  • 无机非金属材料工程专业 +
    无机材料物理性能
    无机材料岩相学
    超硬材料学
    超硬磨具工艺学
    普通磨料磨具工艺学
    超硬材料设备
    实验参量与测量
    材料近代分析测试方法Ⅱ
    材料近代分析测试方法Ⅰ
    无机材料工艺学Ⅰ
    无机材料工艺学Ⅱ
    无机材料工艺学Ⅲ
    无机材料专业综合实验
    无机材料科学基础Ⅰ
    无机材料科学基础Ⅱ
    无机材料力学性能
    新能源材料与技术
  • 材料物理专业 +
    材料力学性能
    材料无损检测
    材料物理科学基础I
    材料物理科学基础II
    功能材料及物理性能
    材料物理专业综合实验
    薄膜技术与表面物理
    材料近代分析测试方法II
    材料近代分析测试方法Ⅰ
    红外光谱技术及应用
  • 高分子材料与工程专业 +
    高分子材料成型原理
    高分子化学
    高分子物理实验
    高分子专业综合实验
    计算机在材料科学中的应用C
    高分子材料研究方法
  • 实验一 焊接接头温度场的数值模拟

      有限元法是一种高效能、常用的计算方法。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。

      基本思想:由解给定的泊松方程化为求解泛函的极值问题。

      有限元法运用的基本步骤:

      步骤1:剖分

      将待解区域进行分割,离散成有限个元素的集合。元素(单元)的形状原则上是任意的。二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等。每个单元的顶点称为节点(或结点)。

      步骤2:单元分析

      进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数。

      步骤3:求解近似变分方程

      用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题。有限元法把连续体离散成有限个单元:杆结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权参量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。