今天是

实验指导书

  • 金属材料工程专业 +
    金属学与热处理I
    金属学与热处理II
    金属无损检测、焊接检验
    金属物理性能
    弧焊方法及工艺
    压力焊
    金属焊接性
    焊接冶金学
    热处理工艺学
    热处理原理
    金属材料及热处理
    金属材料学
    金属材料专业综合实验(热处理)
    金属材料专业综合实验(焊接)
    金属力学性能学
    材料近代分析测试方法
    神奇的金属微观世界(开放实验)
    材料电子显微分析
    工程材料
    X射线衍射分析
    焊接结构
    钎焊工艺
    金属材料科学基础Ⅰ
    金属材料科学基础II
    应力腐蚀
    材料研究方法
  • 无机非金属材料工程专业 +
    无机材料物理性能
    无机材料岩相学
    超硬材料学
    超硬磨具工艺学
    普通磨料磨具工艺学
    超硬材料设备
    实验参量与测量
    材料近代分析测试方法Ⅱ
    材料近代分析测试方法Ⅰ
    无机材料工艺学Ⅰ
    无机材料工艺学Ⅱ
    无机材料工艺学Ⅲ
    无机材料专业综合实验
    无机材料科学基础Ⅰ
    无机材料科学基础Ⅱ
    无机材料力学性能
    新能源材料与技术
  • 材料物理专业 +
    材料力学性能
    材料无损检测
    材料物理科学基础I
    材料物理科学基础II
    功能材料及物理性能
    材料物理专业综合实验
    薄膜技术与表面物理
    材料近代分析测试方法II
    材料近代分析测试方法Ⅰ
    红外光谱技术及应用
  • 高分子材料与工程专业 ×
    高分子材料成型原理
    高分子化学
    高分子物理实验
    高分子专业综合实验
    计算机在材料科学中的应用C
    高分子材料研究方法
  • 实验六 透射电子显微镜分析

      透射电子显微镜是以波长很短的电子束做照明源,用电磁透镜聚焦成像的一种具有高分辨本领,高放大倍数的电子光学仪器。测试的样品要求厚度极薄(几十纳米),以便使电子束透过样品。

      透射电子显微术在高分子研究中有着重要的应用。它可用来观察高分子晶体的形貌和结晶结构,高分子多相体系的微观相分离结构,高分子材料的网络,测定高分子的分子量分布和多孔高分子薄膜的微孔大小与分布,高分子材料的表面、界面和断口、粘合剂的粘结效果以及聚合物涂料的成膜特性,还可用来使高分子晶体的晶格至高分子本身直接成像。

      (一)透射电镜的构造

      透射电镜的主机由电子光学系统、真空系统、供电系统和辅助系统四大部件组成。还可以配备许多附件,例如拉伸附件、加热附件等使它可在一些特殊的条件下观察形貌、结构和对试样的成分进行分析。

      电子光学系统也称为镜筒,是整个电镜的主体,在结构上它和透射光学显微镜十分相似。其照明系统由电子枪和聚光镜组成,成像系统由试样室、物镜、中间镜和投影镜组成。观察和记录系统由观察室和照相机组成。如图1所示。

      1 透射电镜光路图

      (二)透射电镜用聚合物试样的制备技术

      试样的一般要求

      1试样的横向尺寸一般不应大于1mm,需置于直径为2~3 mm的铜制载网上;

      2厚度不超过100~200 nm,常规透射电镜的加速电压为100 kV;

      3载网上再覆盖一层散射能力很弱的支持膜;

      4样品应是固体,不能含有水分及挥发物;

      5样品应有足够的强度和稳定性,在电子束照射下不至于损坏或发生变化;

      6样品及其周围应非常清洁,以免污染而造成对像质的影响。

      样品的一般制备方法:

      1粉末样品可将其分散在支持膜上进行观察。

      2直接制成厚度在100~200 nn之间的薄膜样品,观察其形貌及结晶性质。一般有真空蒸发法、溶液凝固(结晶)法、离子轰击减薄法、超薄切片法。

      3采用复型技术,即制作表面显微组织浮雕的复形膜,然后放在透射电子显微镜中观察。

      “超薄切片”须用专门的超薄切片机,适用于硬度合适的聚合物。聚合物样品被固定在超薄切片机的样品架上。一般选用玻璃刀来进行切片。在切片过程中,调节切片机的进刀量、样品块面与刀的位置、刀的间角与切速等,所得的样品切片将漂浮在玻璃刀背面的水槽里,然后转移至电镜观察用的铜网上。

      “复型”技术是用来观察聚合物表面的一种制样方法。用真空喷镀仪,在样品的表面上蒸发一层很薄的碳膜,然后将原样品的聚合物溶解掉,则可以得到一张保留了聚合物表面结构的复型膜。若聚合物样品很难溶解,则可先在聚合物表面形成一层塑料膜。把这层薄膜从样品表面上剥离下来,并对保留原样品表面结构的膜而喷一层碳,再设法将塑料膜溶解,这成为两步复型法。复型技术常常和聚合物的蚀刻技术结合在—起用。蚀刻通常是用氯磺酸、高锰酸钾等氧化能力强的试剂,将聚合物晶体表面的非晶体部分或结晶不完善的部分浊刻掉,仅留下结晶完善的部分,然后再进行复型,这样就有可能观察到聚合物晶体的内部结构。

      增加样品反差的方法通常有染色和重金属投影。染色的试剂一般是重金属的盐类或氧化物,如四氧化锇(OsO4)等。这些重金属化合物与聚合物样品的一些组分发生选择性吸附,从而固定在样品的一些特定区域。由于重金属对电子散射能力很强,所以有重金属的区域表现为暗区,而其它区域表现为亮区,这就构成了高反差。

      投影技术的原理是:让重金属(如金、铂等)在真空中熔化,金属粒子便会蒸发,以较小角度投影到样品上。使凹凸不平的表面上落下数量不等的重金属沉积,从而形成反差。对于有一定高度的样品,在投影后总有一部分没有重金属沉积,因此存在一个特别的亮面,从这一亮面的长度和投影的角度可以计算出样品的高度。

      值得注意的是,一般聚合物样品在高速电子束下部存在较大的辐照损伤,其结果是使样品被破坏而消失。因此在透射电镜观察时要选择适当的加速电压、束流强度,尽量缩短观察时间。

      (三)像的衬度

      当平行的电子束通过样品时,一部分电子直接穿透样品,而另部分的电子则被样品所散射。当样品是晶体时,散射则采取布拉格衍射的形式。为了使像有一定的衬度,通常是在物镜中插入一光栏,此光栏阻止布拉格射线通过,而只允许透射束和小角度非弹性散射酌电子束通过,这样由于从簿样品不同区域散射出去的电子数目不同,从而使样品的不同区域呈现出不同的亮度,因而产生了像的衬度。这种衬度称为“衍射衬度”,这样形成的像称为“明场像”。

      另外,移动物镜光栏或倾斜照明系统(电子枪加第一和第二聚光镜)使某一衍射线通过,而透射线和其它衍射线不通过,这样也能成像,这种方式酌像称为“暗场像”。

      (四)分辨本领

      分辨本领是以样品上两细节尚能分别看出时,其间的最小距离来表征,这个距离越小,分辨本领就愈大。如果组成电子显微镜的各个透镜都能给物体形成理想的像,就是说,①从物面上一点向不同方向发出的电子都汇聚到像面上的一点去;②像和物在几何上相似,只是一个放大倍数的比例关系,则只要放大倍数足够大,就可以看清楚样品上想要观察的细微结构。但事实上透镜都不是理想的,当不满足上述第①条时,就影响了分辨本领,当不满足第②条时,像就产生畸变。影响分辨本领的因素有:

      1球差球差是物镜最主要的缺陷,目前还没有补偿的办法。是由于电磁透镜磁场的近轴区和远轴区对电子束的会聚能力不同而造成的。

      2色差普通光学中不同波长的光线经过透镜时,因折射率不同,将在不同点上聚焦,由此引起的像差称为色差。电镜色差是电子波长差异产生的焦点漂移。

      3轴上像散轴上像散又可简称为像散,它是由于透镜磁场不是理想的旋转对称磁场而引起的像差。

      4畸变球差还会影响图象畸变。也是由远轴区折射率过强引起的。主要发生在中间镜和投影镜。

      1)若存在正球差,产生枕形畸变;2)若有负球差,将产生桶形畸变;3)由于磁透镜存在磁转角,势必伴随产生旋转畸变。